Exercise 37

Let $f(x)=c x+\ln (\cos x)$. For what value of c is $f^{\prime}(\pi / 4)=6$?

Solution

Start by taking the derivative of the function with respect to x.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[c x+\ln (\cos x)] \\
& =\frac{d}{d x}(c x)+\frac{d}{d x}[\ln (\cos x)] \\
& =c+\left[\frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)\right] \\
& =c+\left[\frac{1}{\cos x} \cdot(-\sin x)\right] \\
& =c+\left(-\frac{\sin x}{\cos x}\right) \\
& =c-\tan x
\end{aligned}
$$

Set $x=\pi / 4$ to get $f^{\prime}(\pi / 4)$.

$$
f^{\prime}(\pi / 4)=c-\tan \frac{\pi}{4}=c-1
$$

In order for $f^{\prime}(\pi / 4)=6$,

$$
\begin{gathered}
c-1=6 \\
c=7 .
\end{gathered}
$$

